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VARIATIONAL PRINCIPLE OF THERMOELECTROELASTICITY

AND ITS APPLICATION TO THE PROBLEM OF VIBRATIONS

OF A THIN-WALL MEMBER

UDC 539.3A. O. Vatul’yan and V. V. Kovaleva

The dynamic behavior of thin-wall members manufactured from materials with the pyroelectric effect
was studied. A variational formulation of the problem is used, and a variational principle is formu-
lated that differs from the well-known one. Correct boundary-value problems describing the tension,
compression, and bending of a thin-wall pyroelectric member are constructed using the variational
principle and a number of hypotheses on the distribution of the components of physical fields along
the width of the member.

Introduction. Structures and members manufactured from piezoactive materials are presently widely
used in engineering. It is of interest to study their behavior under conditions of nonuniform temperature loading.
Investigations and calculations were performed using the model of coupled thermoelectroelasticity [1], in which the
system of equations is generally rather complex. The boundary-value problems of thermoelectroelasticity are based
on the equations of thermopiezoelectricity formulated by R. D. Mindlin at the beginning of the 1960s of the 20th
century. The mutual effect of thermal, electrical, and elastic fields was studied in [2–5]. A generalized formulation
of the boundary-value problem of thermoelectroelasticity is given in [5]. In the solution of particular problems, a
need arises to construct simpler models and equations.

In the present paper, we consider the system of equations and boundary conditions for the problem of
vibrations of thin-wall members manufactured from materials with the piezo- and pyroelectric effect.

1. Formulation of the Problem. The problem of steady-state vibrations of a body which occupies volume
V with boundary S is studied using the model of coupled linear thermoelectroelasticity. Assuming steady-state
vibrations and omitting the time factor e−iωt, we write the basic equations in the form

σij,j + Fi = −ω2ρui, Dk,k = 0, −iωT0η = −qi,i + w. (1)

The constitutive relations are [1]

σij = cijklεkl − γijθ − ekijEk, Di = eiklεkl + gjθ + εikEk, η = γijεij + (cε/T0)θ + giEi,
(2)

Ek = −ϕ,k, εij = (ui,j + uj,i)/2, qi = −kijθ,j .

Here σij are the stress-tensor components, Di are the components of the electric-induction vector, η is the entropy,
qi are the components of the heat-flux vector, Fi are the components of the volume-force vector, w is the volume
power of internal heat sources, uj are the displacement-vector components, ϕ is the electric potential, θ is the
temperature increment relative to the temperature in the natural state cijkl are the elastic-tensor components,
eikl are the piezoelectric-tensor components, εik are the permittivity-tensor components, γij are the components of
the temperature-stress tensor, gi are the pyroelectric coefficients, kij are the components of the thermal-conduction
tensor, cε is the heat capacity for constant deformation, ρ is the density, T0 is the Kelvin temperature in the natural
state (all quantities correspond to the isothermal state).

Rostov State University, Rostov-on-Don 344006. Translated from Prikladnaya Mekhanika i Tekhnicheskaya
Fizika, Vol. 43, No. 1, pp. 196–201, January–February, 2002. Original article submitted June 25, 2001; revision
submitted September 20, 2001.

162 0021-8944/02/4301-0162 $27.00 c© 2002 Plenum Publishing Corporation



The surface S bounding the body can be represented as S = Su ∪ Sσ = Sθ ∪ Sq = S− ∪ S+ ∪ SH . The
boundary conditions are written as

σijnj |Sσ = pi, ui|Su = ui0, qjnj |Sq = f, θ|Sθ = θ0, Djnj |SH = 0, ϕ|S± = ±ϕ0, (3)

where pi, ui0, θ0, and f are known functions, 2ϕ0 is the specified potential difference, and nj are the components
of the unit vector of the outer normal to S.

If the quantity ϕ0 is unknown, it is determined from the additional condition that the piezoelectric member
is connected in the electric circuit:

iω

∫
S+

Dn dS = −I, (4)

where I is the amplitude of the periodic current.
Thus, the behavior of the thermoelectroelastic body is described by a system of five second-order differential

equations of complex structure with boundary conditions (3). We construct simpler models of thin-wall pyroelectric
members similar to the models of plate and beam bending. To construct such models correctly, one need to use the
variational principle of thermoelectroelasticity.

2. Formulation of the Variational Principle. The variational principle of thermoelectroelasticity
is formulated in [1], where the equations and boundary conditions are constructed by varying two independent
functionals. The variational principle given in the present paper is an analog of the Lagrange variational principle
of elastic theory, and the pertinent functional is constructed by the Lagrange multiplier method factors. Let us
introduce the concept of a kinematically possible field in the problem of thermoelectroelasticity. We assume that it
consists of the functions ui, ϕ, and θ which are doubly continuously differentiable in the volume V and satisfy the
kinematic boundary conditions δui|Su = 0, δϕ|Sϕ = 0, and δθ|Sθ = 0. Then, the following statement holds. Among
all kinematically possible fields, true fields provide for a steady-state value for the functional L:

L =
∫
V

(ρω2

2
u2
i + Fiui +

w

iωT0
θ − 1

2
cijklεijεkl + εikϕ,i ϕ,k −

1
2iωT0

kijθ,j θ,i

+
cε

2T0
θ2 − ekijεijϕ,k +γijεijθ − giϕ,i θ

)
dV +

∫
Sσ

piui dS −
1

iωT0

∫
Sq

fθ dS. (5)

The variational equation δL = 0 is equivalent to system (1) subject to the constitutive relations (2) and the boundary
conditions on Sσ, Sθ, and Sq in (3).

Varying the functional L, we obtain

δL =
∫
V

[
(ρω2ui + Fi + σij ,j )δui +Dk,k δϕ+

( w

iωT0
+ η − 1

iωT0
qi,i

)
δθ
]
dV

+
∫
Sσ

(pi − σijnj)δui dS −
1

iωT0

∫
Sq

(f − qini)δθ dS +
∫
SH

Dknkδϕ dS = 0. (6)

Since the variations of the displacements, potential, and temperature are arbitrary and independent, then, by virtue
of the basic lemma of variational calculus, from relation (6) it follows that the factors at relevant variations in both
the volume and surface integrals are equal to zero, and, hence, Eq. (1) and the natural boundary conditions in (3).

3. Simple Model for Vibrations of a Thin-Wall Member. We consider the problem of vibrations of
a plate of a thermoelectroelastic material of the 6 mm class. We assume that the plate is in a plane strain state
and the required fields satisfy the constraints

u2 = 0,
∂ui
∂x2

=
∂ϕ

∂x2
=

∂θ

∂x2
= 0.

The section of the plate x2 = const is a rectangle Ω [−l, l]× [−H,H]. Vibrations of the plate arise because
of the difference in temperature between the boundaries x3 = ±H:

σ13|x3=±H = σ33|x3=±H = 0, ϕ|x3=±H = ±ϕ0, θ|x3=±H = θ±,
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σ13|x1=±l = σ11|x1=±l = 0, D1|x1=±l = 0, q1|x1=±l = 0.

In this formulation, the constants θ± are known and the unknown potential ϕ0 is determined from the additional
condition (4), which, in this case, becomes

l∫
−l

D3(x1,H) dx1 = 0. (7)

Let us construct a simplified model for the deformation of the plate with ε = H/l � 1 using the classical
Kirchhoff hypotheses and assuming

u1 = u10(x1)− x3u
′
30(x1), u3 = u30(x1), ϕ = (x3/H)ϕ0, θ = T1 + (x3/H)T2, (8)

where T1 = (θ+ +θ−)/2 and T2 = (θ+−θ−)/2. Substituting (8) into the functional, we obtain its variation. Setting
the factors at the independent variations δu10 and δu30 equal to zero, we obtain a system of equations and boundary
conditions that describe vibrations of a thin-wall member within the framework of the thermoelectroelasticity model.

The obtained system of equations and boundary conditions is naturally divided into two independent prob-
lems, which can conditionally be called the problems of “tension–compression” (Problem 1) and “bending” (Prob-
lem 2) of a thin-wall member.

Problem 1. The unknown function u10 satisfies the equation and the boundary conditions

c∗11u
′′
10 + ρω2u10 = 0, c∗11u

′
10|x1=±l = γ∗11T1 − (e∗31/H)ϕ0.

Problem 2. The unknown function u30 satisfies the equation and the boundary conditions

c∗11u
(4)
30 + ρω2u′′30 −

3ρω2

H2
u30 = 0, (c∗11u

′′′
30 + ρω2u′30)|x1=±l = 0, c∗11u

′′
30|x1=±l = −γ

∗
11

H
T2.

Here c∗11 = c11 − c213/c33, γ∗11 = γ11 − c13γ33/c33, and e∗31 = e31 − e33c13/c33.
It should be noted that the difference in temperature between the boundaries enters into the equation of

Problem 2, and the sum enters into the equation of Problem 1. In Problem 2, the equation and the first boundary
condition differ from the equation and boundary condition of the classical problem of beam bending only in the
terms ρω2u′′30 and ρω2u′30, respectively, which take into account rotary inertia [6]. The term −(γ∗11/H)T2, which
depends on the difference of the temperatures θ+ and θ−, plays the role of the bending moment applied at the edges
x1 = ±l.

The additional condition (7) has the form
l∫
−l

(
e∗31(u′10 −Hu′′30)− ε∗33

H
ϕ0 + g∗3(T1 + T2)

)
dx1 = 0, (9)

where ε∗33 = ε33 + e2
33/c33 and g∗3 = g3 + γ33e33/c33.

The solutions of Problems 1 and 2 are written as

u10 =
l(γ∗11T1 − (e∗31/H)ϕ0)

c∗11k cos k
sin
(k
l
x1

)
, u30 =

γ∗11

c∗11HK0
(f(ξ2) cosh (ξ1x1)− f(ξ1) cosh (ξ2x1))T2,

where k = ωl/c, c =
√
c∗11/ρ, ε = H/l, ξ1,2 = (k/(

√
2l))

√
−1±

√
1 + 12/(k2ε2), f(ξ1) = ξ1(ξ2

1 + k2/l2) sinh (ξ1l),
and K0 = ξ2

2f(ξ1) cosh (ξ2l)− ξ2
1f(ξ2) cosh (ξ1l).

The induced potential is determined from (9) as follows:

ϕ0 = ϕ1T1 + ϕ2T2,

ϕ1 = H(e∗31γ
∗
11 sin k + g∗3c

∗
11k cos k)/d0, d0 = ε∗33c

∗
11k cos k + e∗231 sin k,

ϕ2 = c∗11k cos k(g∗3 l − (e∗31γ
∗
11/K0)(f(ξ2)ξ1 sinh (ξ1l)− f(ξ1)ξ2 sinh (ξ2l)))/d0.

Let us analyze the obtained formulas for calculating the induced potential. In a pyroelectric member there
are two sets of resonant frequencies that correspond to longitudinal resonances, determined from the condition
d0(kj) = 0, and bending resonances, determined from the equation K0(ki) = 0. At these frequencies, the induced
potential tends to infinity. It should be noted that at T2 = 0 there is no bending.
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4. Improved Model of Vibrations of a Thin-Wall Member. The simplest model of deformation of
a thin-wall member studied in Sec. 3 ignores the temperature distribution along the x1 coordinate and yields an
infinite increase of the potential at the frequencies of the longitudinal and bending resonances.

We consider an improved model of vibrations of a thin-wall member, assuming that

u1 = u10(x1)− x3(e15/c44)Φ′0(x1)− x3u
′
30(x1), u3 = u30(x1),

(10)

ϕ = (1− x2
3/H

2)Φ0(x1) + x3ϕ0/H, θ = (1− x2
3/H

2)θ0(x1) + (x3/H)T2 + (x2
3/H

2)T1.

In this case, the following kinematic boundary conditions are satisfied: ϕ(x1,±H) = ±ϕ0 and θ(x1,±H) = θ±.
In addition, σ13(x1,±H) = 0, and the additionally introduced functions Φ0(x1) and θ0(x1) have a simple physical
meaning: ϕ(x1, 0) = Φ0(x1) and θ(x1, 0) = θ0(x1).

Varying the functional (5) with allowance for (10) and setting the factors at the independent variations δu10,
δu30, δΦ0, and δθ0 equal to zero, we obtain a system equations and boundary conditions, which is also divided in
a natural fashion into two independent problems.

Problem 1a (generalized problem of tension–compression). The unknown functions u10 and θ0 satisfy the
following equations and boundary conditions:

c∗11u
′′
10 + ρω2u10 − (2/3)γ∗11θ

′
0 = 0,

γ∗11u
′
10 +

4
5
k11

iωT0
θ′′0 −

( 2
H2

k33

iωT0
− 4

5
c∗ε
T0

)
θ0 = −

( 2
H2

k33

iωT0
+

1
5
c∗ε
T0

)
T1 +

g∗3
H
ϕ0,

(c∗11u
′
10 − (2/3)γ∗11θ0)|x1=±l = γ∗11T1/3− (e∗31/H)ϕ0, θ′0|x1=±l = 0.

Problem 2a (generalized bending problem). The unknown functions u30 and Φ0 satisfy the following
equations and boundary conditions

c∗11u
(4)
30 + ρω2u′′30 −

3ρω2

H2
u30 + c∗11

e15

c44
Φ(4)

0 +
(
ρω2 e15

c44
+

2e∗31

H2

)
Φ′′0 = 0,

c∗11

e15

c44
u

(4)
30 +

(
ρω2 e15

c44
+

2e∗31

H2

)
u′′30 + c∗11

e2
15

c244

Φ(4)
0

+
(
ρω2 e

2
15

c244

+
4e∗31

H2

e15

c44
+

19
H2

e2
15

c44
+

8
5
ε11

H2

)
Φ′′0 −

4ε∗33

H4
Φ0 =

2g∗3
H3

T2,

(
c∗11u

′′′
30 + ρω2u′30 + c∗11

e15

c44
Φ′′′0 +

(
ρω2 e15

c44
+

2e∗31

H2

)
Φ′0
)∣∣∣
x1=±l

= 0,

(
c∗11

e15

c44
u′′′30 + ρω2 e15

c44
u′30 + c∗11

e2
15

c244

Φ′′′0 +
(
ρω2 e

2
15

c244

+
2e∗31

H2

e15

c44
+

19
H2

e2
15

c44
+

8
5
ε11

H2

)
Φ′0
)∣∣∣
x1=±l

= 0,

(
c∗11u

′′
30 + c∗11

e15

c44
Φ′′0 +

2e∗31

H2
Φ0

)∣∣∣
x1=±l

= −γ
∗
11

H
T2.

The additional condition (7) has the form
l∫
−l

(
e∗31

(
u′10 −H

e15

c44
Φ′′0 −Hu′′30

)
− ε∗33

H
(ϕ0 − 2Φ0) + g∗3(T1 + T2)

)
dx1 = 0. (11)

It should be noted that the sum of the temperatures on the boundaries enters into Problem 1a, and their
difference enters into Problem 2a. Problems 1a and 2a are much more complicated than Problems 1 and 2. Their
solutions are expressed in terms of roots of biquadratic and bicubic characteristic equation.

The induced potential has the same structure as in Sec. 3: ϕ0 = ϕ1T1 +ϕ2T2, and ϕ1 and ϕ2 are found from
condition (11).

We construct a solution of Problem 1a for the case where T2 = 0, i.e., bending is absent and Φ0 = 0, u30 = 0.
In this case, the solution of Problem 1 has the form
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Fig. 1 Fig. 2

u10 =
2∑
i=1

Ai sinh (λix1), θ0 =
2∑
i=1

Bi cosh (λix1) + L1T1 −
L2

H
ϕ0,

Ai = (2/3)(γ∗11/c
∗
11)λiXi, Bi = (λ2

i + k2/l2)Xi, L1 = b3/b2, L2 = b4/b2.

Here λi are solutions of the characteristic equation

(4/5)λ4 + (2γ∗211b1/(3c
∗
11)− b2 + 4k2/(5l2))λ2 − b2k2/l2 = 0,

where b1 = T0ikc/(k11l), b2 = (10lk33 − 4c∗εk11H
2ikc)/(5H2k11l), b3 = (10lk33 + c∗εk11H

2ikc)/ (5H2k11l), and
b4 = g∗3T0ikc/(k11l), and Xi are obtained from boundary conditions

X1 =
3
2
c∗11

γ∗11

l2

k2

F (λ2)
D0

(
N1T1 −N2

ϕ0

H

)
, X2 = −3

2
c∗11

γ∗11

l2

k2

F (λ1)
D0

(
N1T1 −N2

ϕ0

H

)
,

where
F (λ1) = λ1(λ2

1 + k2/l2) sinh (λ1l), N1 = γ∗11(1 + 2b3/b2)/(3c∗11), N2 = (e∗31 + 2γ∗11b4/(3b2))/c∗11, and D0 =
F (λ1) cosh (λ2l)− F (λ2) cosh (λ1l).

The potential ϕ0 is determined from the additional condition (11):

ϕ0 = T1H
g∗3 lk

2D0 + λ1λ2l
2e∗31N1 sinh (λ1l) sinh (λ2l)(λ2

2 − λ2
1)

ε∗33lk
2D0 + λ1λ2l2e∗31N2 sinh (λ1l) sinh (λ2l)(λ2

2 − λ2
1)
.

In this case, the value of the potential ϕ0 is complex. Then, separating the real part, we obtain ϕ0 = AR sin (ωt+δ3),
where A is a dimensional factor and R is the dimensionless amplitude which depends on k.

Figures 1 and 2 gives curves of the potential amplitude versus the dimensionless frequency k for a pyroelec-
tric member made of barium titanate (the solid curves correspond to the simplest model and the dashed curves
correspond to the improved model). In Fig. 1, the curves are shown in the neighborhood of the first longitudinal
resonance and in Fig. 2, they are shown in the neighborhood of the second longitudinal resonance. A comparison
of these curves show that in the improved model, the amplitudes are finite and shifted toward increasing k. An
analysis shows that the improved model can be used to describe coupled vibrations of pyroelectric members.

In the case of γ∗11 = 0 at T2 = 0, which corresponds to the absence of coupling, in Problems 1 and 1a, the
solutions for the induced potential in both models coincide and are brought to the form ϕ1 = T1Hg

∗
3c
∗
11k cos k/d0.

In modeling vibrations of pyroelectric members, it is common to use the concept of weak coupling, in which
the quantities γ∗11 and g∗3 are considered small and regular expansions in these parameters are constructed. It is
easy to show that with this approach, infinite jumps of the potential amplitude at the frequencies of the longitudinal
and transverse resonant are retained. In the nonresonant fields, this approach yields results close to those obtained
for the improved model.

This work was supported by the Russian Foundation for Fundamental Research (Grant Nos. 99-01-01011
and 00-15-96087).
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